The Variety Generated by Tournaments

Miklós Maróti Vanderbilt University

TOURNAMENTS

Definition. A *tournament* is a complete directed graphs with loops

a commutative groupoid satisfying $xy \in \{x, y\}$ (conservative law).

SIMPLE TOURNAMENTS

Theorem (P. Erdős, E. Fried, A. Hajnal, E.C. Milner). Every tournament (with the exception of odd chains) has a one-point extension to a simple tournament.

CONGRUENCES AND AUTOMORPHISMS

Definition. A finite lattice is *admissible* if it is isomorphic to the congruence lattice of a tournament.

Theorem (V. Müller, J. Nešetřil, J. Pelant). Given an admissible lattice \mathbf{L} , an odd group \mathbf{G} , and a tournament \mathbf{T} , there is a tournament \mathbf{A} such that $\operatorname{Con} \mathbf{A} \cong \mathbf{L}$, $\operatorname{Aut} \mathbf{A} \cong \mathbf{G}$ and $\mathbf{T} \leq \mathbf{A}$.

- Admissible lattices are characterized.
- Automorphism groups of tournaments are groups of odd order (J.W. Moon).

EQUATIONS OF TOURNAMENTS

Theorem (J. Ježek, P. Marković, M. Maróti, R. McKenzie). The following four equations form a base for the 3-variable equations of tournaments:

(1)
$$xx = x$$

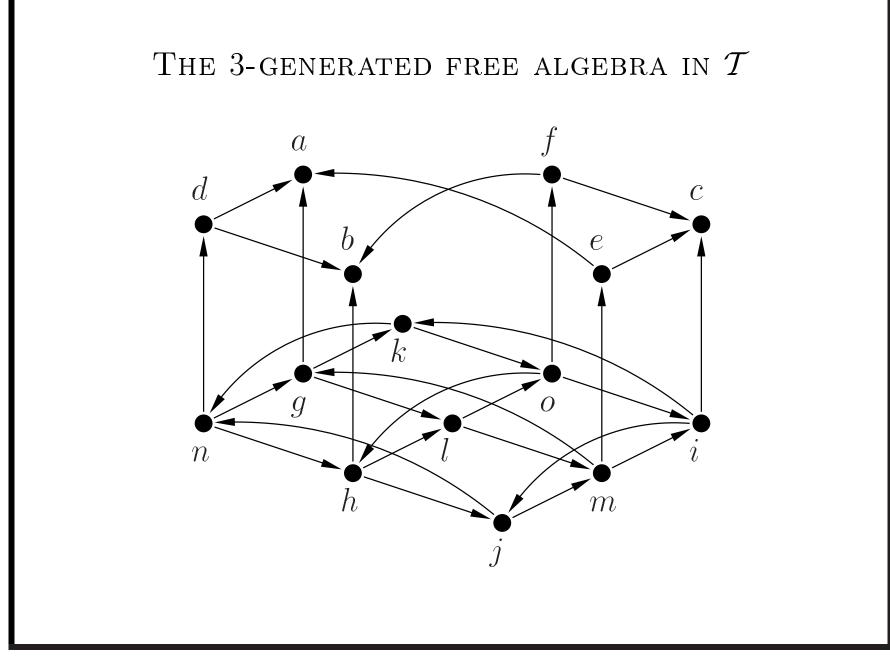
$$(2) \ xy = yx$$

$$(3) (xy)x = xy$$

$$(4) \ (xy \cdot xz)(xy \cdot yz) = (xy)z$$

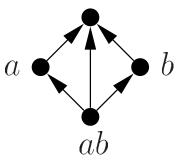
Question (V. Müller, J. Nešetřil, J. Pelant). Are tournaments finitely based?

Definition. Denote by \mathcal{T} the variety generated by tournaments.



THE VARIETY GENERATED BY TOURNAMENTS

Not every member of \mathcal{T} is a tournament. We write $x \to y$ if xy = x.



Theorem (J. Ježek, P. Marković, M. Maróti, R. McKenzie). The variety \mathcal{T} is

- (1) locally finite (S. Crvenković, I. Dolinka, P. Marković),
- (2) not finitely based,
- (3) inherently non-finitely generated,
- (4) congruence meet-semidistributive.

SUBDIRECTLY IRREDUCIBLE ALGEBRAS

Question (R. McKenzie). Are all subdirectly irreducible members of \mathcal{T} tournaments?

Theorem (R. McKenzie). All simple members of \mathcal{T} are tournaments.

Definition. We call an algebra $\mathbf{A} \in \mathcal{T}$ strongly connected if for any $a, b \in A$ there exists a path $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{n-1} = b$.

Lemma (J. Ježek). If all strongly connected, subdirectly irreducible members of T are tournaments, then all subdirectly irreducibles are tournaments.

The proof

- $\bullet\,$ minimal representation of ${\bf S}$
- weakly indecomposable subdirect products
- triangular graphs
- maximal spanning triangular graphs
- subdirect products of finitely many strongly connected tournaments are strongly connected
- triangular algebras
- unique coatom β in Con S
- the blocks of β , the arrows
- blow-up composition

8

Consequences

Corollary. Every finitely generated subvariety of varT has a finite residual bound.

Corollary. Every finitely generated subvariety of \mathcal{T} is finitely based.

Corollary. The lattice of subvarieties of \mathcal{T} is distributive. Every join irreducible subvariety of \mathcal{T} is generated by a unique (up to isomorphism), hereditarily zeroless finite subdirectly irreducible tournament.

Corollary. The lattice 2^{ω} can be embedded into the lattice of subvarieties of \mathcal{T} .